

Pergamon

0040-4039(94)E0609-2

Synthesis of Novel Chiral Macrocycles: Crown Ethers Derived from D-Glucose

Neelakandha S. Mani*.1 and Puthuparambil P. Kanakamma

Regional Research Laboratory (CSIR), Trivandrum 695019, India.

Abstract: Two new macrocycles (1 and 2) incorporating a crown ether and a glucose unit have been synthesized efficiently in six steps from α -allyl glucopyranoside. Preliminary complexation studies with alkali metal and ammonium ions are described.

Modification of crown ethers by incorporating chiral units was first introduced by Cram² and subsequently developed by many others.^{3,4} The ability of such systems to discriminate between enantiomers of guest alkylammonium salts as well as their catalytic activity have attracted considerable attention as potential enzyme mimics^{5.} A particularly interesting group of chiral crown ethers were those developed from carbohydrate units originally introduced by Stoddart³ and more recently by Penades and co-workers⁶. Carbohydrate derivatives are ideally suited for developing novel chiral compounds due to their rich array of bis methylenedioxy units and the ease with which these hydroxl groups can be introduced into the crown ether periphery using standard protocols in carbohydrate chemistry.

We now report here the synthesis of two novel derivatives 1 and 2 derived from D-glucose.Unlike previously reported compounds, 1 and 2 belong to a novel class of chiral crown ethers in which a glucose unit is introduced through 1,4-hydroxyl groups. Apart from conferring a novel topology to the macrocycle, the additional hydroxyl groups at 2,3 and 6 positions are placed closer to the crown ether cavity and offer great potential for introducing additional binding or catalytic sites.

Synthesis of 1 and 2 were achieved efficiently as outlined in the Scheme. The benzylidene derivative 4 was conveniently prepared from α -allyl -D-glucopyranoside by treatment with benzaldehyde in DMF using dimethyl sulphate -DMF adduct as the catalyst⁷(colourless crystalline needles,mp.118°C,70%). Benzylation by NaH-benzyl chloride in refluxing THF furnished the dibenzyl derivative 5 as a crystalline solid in excellent yield (91%, mp.86°C). The benzylidene acetal was reductively opened using HCl-NaCNBH₃ in ether-THF⁸ at room temperature⁹ to obtain allyl 2,3,6 tri-O-benzyl- α -D-glucopyranoside 6 as a glassy solid in 80% yield. The structure of the product was clearly established by ¹H and ¹³C spectral data¹⁰. Treatment of 6 with NaH-allyl bromide in refluxing THF afforded the 1,4 diallyl derivative 7 in 98% yield.Ozonolysis of the diallyl derivative 7 in methanol at -78° C followed by reductive workup (NaBH₄, -78° C→RT) furnished the diol 8 in 79% yield.

a) C₆H₅-CHO, DMF-(CH₃)₂ SO₄, RT, 18h; b) C₆H₅CH₂Cl, NaH, THF, 70°C, 20-24h; c) NaCNBH₃-HCl (ether), THF, RT, 10 min.; d) allyl bromide, NaH, THF, 70 °C,5h; e) O₃, MeOH, -78°C, NaBH₄; f) NaH, 9/10, THF, 70°C, 24h.

Coupling the diol 8 with triethylene glycol ditosylate 9 using NaH in refluxing THF¹¹ (24h) afforded macrocycle 1 in34% yield after purification by column chromatography (silica, hexane-ethyl acetate), as a glassy solid. In a similar fashion, coupling of the diol 8 with the ditosylate 10 furnished the macrocycle 2 in 29% yield. The structures of both 1 and 2 were confirmed by NMR, mass spectra and microanalysis^{12,13}.

The binding abilities of chiral macrocycles 1 and 2 were evaluated by extraction of lithium, sodium, potassium, cesium, and ammonium picrates. The association constants (K_a) in chloroform at 27° C were measured by Cram's picrate method.¹⁴ The K_a values were much lower than those of simple crown derivatives¹⁵. However these values are of the same order of magnitude as reported in the literature for monosaccharide derived crown ethers⁶. Macrocycle 1 showed relatively good binding towards potassium and ammonium ions.

Host	Li+	Na ⁺	K+	Cs+	NH4+
1	2,700	3,600	30,000	5,400	49,500
2	4,000	3,000	13,000	3,000	9,000

Table 1. Association constants in CDCl₃ at 27° C

We are currently investigating the binding properties of 1 and 2 with particular regard to enantioselective complexation with ammonium ions. We are also extending the synthetic approach to bis dextro crown derivatives.

Acknowledgement: We thank CSIR, New Delhi for the financial support of this work.

REFERENCES AND NOTES

- 1. Current address: Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218.
- (a) Kyba, E. B.; Koga, K.; Sousa, L. R.; Siegel, M. G; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 2692.

(b) Sogah, G.D.Y.; Cram, D. J. J Am Chem. Soc., 1979, 101, 3035.

- (a) Curtius, W.D.; Laidler, D.A.; Walstenhome, J.B.; Stoddart, J.F. Carbohydr. Res., 1977, 57 C17. (b) Stoddart, J. F. Chem. Soc. Rev., 1979, 8, 85.
- (a) Lehn, J.M.; Sauvage, J.P. J. Am. Chem. Soc., 1975, <u>97</u>, 6700. (b)Schurmann, G.; Diederich, F. Tetrahedron Lett., 986, <u>27</u>, 4249. (c) Odashima, K.; Itai, A.; Iitaka, Y.; Koga, K. J. Org. Chem., 1985, <u>50</u>, 4478.
- 5. Breslow, R.; Czarniecki, M.F.; Emert, J.; Hamaguchi, H. J. Am. Chem. Soc., 1980, 102, 762.
- (a)Alonso-Lopez, M.; Bernabe, M.; Fernandez-Mayoralas, A.; Jimenez-Barbero; Martin-Lomas, M; Penades, S. Carbohydr. Res., 1986, 103, 150. (b)Alonso-Lopez, M.; Jimenez-Barbero, J; Martin-Lomas, M.; Penades, S. Tetrahedron, 1988, 44, 1535. (c)Alonso-Lopez, M.; Martin-Lomas, M.; Penades, S. Tetrahedron Lett., 1986, 27, 3551.

- 7. (a)Kantlehner, W; Gutbrod, H.D.; Liebigs Ann. Chem., 1979,1362-69. (b)Mani, N.S. Indian J. Chem., 1989, 28B, 602.
- (a) Garegg, Per J.; Hultberg, Hans; Wallin, S. Carbohydr. Res., 1982, 105, 97. (b) Garegg, Per J.; Hultberg, Hans, *ibid*, 1981, 93, C10.
- 9. When carried out at 0°C, the reaction proceeded very slowly. However, at slightly elevated temperature(25°C) smooth conversion occured to yield 6 in very good yield⁸.
- 10 ¹H (400 MHz) and ¹³C (100 MHz) spectrum of 6 in CDCl₃: ¹H δ,3.45-3.80(bm, 7H), 4.05(m, 1H), 4.2 (m, 1H), 4.4-5.1(bm, 7H), 5.35(m, 2H), 5.95(m, 1H),and 7.3(m, 15H); ¹³C δ, 68.5, 69.5, 70.0, 70.5, 73.0, 74.0, 75.5, 80.0, 81.5, 96.0, 119.5, 128.5, 134.0, 138.0, 139.0; IR (neat): 620, 750, 1460, 1500, 1600, 900, 3040,and 3400cm⁻¹. $[\alpha]_D^{25}$: 24.811 (c, 1.38; CHCl₃). Anal. calcd. for C₃₀ H₃₄ 0₆: C,73.42; H, 6.98. Found: C, 72.95; H, 6.89.
- 11. Vicent, C.; Martin-Lomas, M.; Penades, S. Tetrahedron, 1989, 45, 3605.
- 12. ¹H (300 MHz) and ¹³C (75 MHz) spectrum of 1 in CDCl₃: ¹H δ , 3.6 (bs, 27H), 4.6(m, 3H), 4.9 (m, 3H), 7.25(m, 15H); ¹³C δ , 67.5, 68.4, 69.8, 70.8, 71.1, 71.6, 73.3, 77.8, 79.6, 82.0, 97.2, 128.7, 129.8, 138.4, and 139.0. IR (neat): 610, 700, 740, 1100, 1370, 1460, 1610, , 2900, and, 3040cm⁻¹.[α]D²⁶ 12.003 (c, 0.96; CHCl₃); MS: M/z 653.4 (MH⁺). Anal.calcd.for C₃₇H48O10: C, 68.08; H, 7.4 Found: C, 68.46, H, 7.4.
- 13. ¹H (300 MHz) and ¹³C (75 MHz)spectrum of 2in CDCl₃: δ , 3.45-4.25(bm, 23H), 4.34(d, 1H) 4.75(m, 5H), 6.9(s, 4H), 7.25(m, 15H); ¹³C δ , 68.7, 69.0, 69.6, 70.6, 71.2, 75.8, 77.7, 80.1, 96.3, 115.3, 121.9, 127.8, 128.5, 129.6, 132.7, and 145.6. IR(neat): 600, 700, 740, 1260, 1370, 1460, 1500, 1600, 2900, and 3040cm⁻¹. [α]D²⁶ 29.407 (c, 1.5; CHCl₃); MS: M/z 701.4 (MH⁺). Anal. calcd.for.C41H48O10: C, 70.26; H, 6.90. Found: C, 70.46; H, 6.85.
- 14. Moore, S.S.; Tarnowski, T.L.; Newcomb, M.; and Cram, D.J. J.Am.Chem.Soc.. 1977, <u>99</u> 6398.
- (a) Timko, J.M.; Moore, S.S.; Walba, D.M.; Hiberty, P.C.; Cram, D.J. J.Am.Chem.Soc., 1977 99, 4207. (b) Izatt, R.M.; Pawlak, K.; Bradshaw, J.S.; Bruening, R.L. Chem.Rev., 1991 .91. 1721.

(Received in UK 10 January 1994; revised 21 March 1994; accepted 24 March 1994)