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A-c lbouew ~les(land2)incorporatingaCrOWnethQandaglucosclnithave 
beensyn~efficientiyinsix~froma-allylgl ~de.Pdiiinary complexatim 
Studic3wilhakalimctalmdmmtoniumiatsaredcscribcd. 

Modification of crown ethers by incorporating chiral units was first introduced by Cram2 and 
subsequently developed by many others. 3.4 The ability of such systems to discriminate between 
enantiomers of guest alkylatnmonium salts as well as their catalytic activity have attracted considerable 
attention as potential enzyme tuitnlcs5~ A particularly interesting group of chiral cmwn ethers were those 
developed fmm carbohydrate units originally introduced by St&dart3 and more recently by Penades and 
cctwcnkers6Catbohydrate derivatives are ideally suited for developing novel chiral compounds due to their 
rich array of his tnethylenedioxy units and the ease with which these hydtoxl groups can be introduced into 
the cmwn ether perlphery using standard protocols in carbohydrate chemistry. 

We now report here the synthesis of two novel derivatives 1 and 2 derived from D-glucoseUnlike 
previously reported compounds.1 and 2 belong to a novel class of chiral crown ethers in which a glucose 
unit is introduced through 1,4-hydroxyl groups. Apart from conferring a novel topology to the 
macrocycle, the additional hydroxyl groups at 2,3 and 6 positions are placed closer to the crown ether 
cavity and offer great potential for introducing additional binding or catalytic sites. 
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Synthesis of 1 and 2 wem achieved efficiently as outlined in the Schem. The benzylidene derivative 4 
was conveniently prepared from a-ally1 -D-glucopyranoside by ttratment with benzaldehyde in DMF using 
dimethyl sulphate -DMF adduct as the catalyst7(colourless crystalline ncedles.mp. 118’C,7O%).Benzylation 
by NaH-benzyl chloride in refluxing THF fumished the dibenzyl derivative 5 as a crystalline solid in 
excellent yield (91%. mp.l6C).The benzylidene acctal was lleductively opqned using HCLNaCNBH3 in 
ether-m at room temperature9 to obtain ally1 2,3,6 @i-O-bcnzyl-a-D-giucopyranoside 6 as a glassy 
solid in 80% yield.The structure of the product was clearly established by *H and *SC spectral datalo. 
Treatment of 6 with NaH-ally1 bromide in refluxing THF afforded the 1.4 diallyl derivative 7 in 98% 
yieldOzonolysis of the diajlyl derivative 7 in methanol at -78’ C followed by reductive workup (NaBHq, 
-78’ C+RT) furnished the diol8 in 79% yield. 
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a) QH~-CHO. DMF-(CH3)2 SO4, RT, 18h; b) C&CH$X NaH, THF, 70X 20-2431; c) 
NacNBHs-HCl (ether), THF, RT, 10 min.; d) ally1 bromide, NaH, ‘IT-IF, 70 ‘Wh; e) 03, MeOH, 
-78’C, NaBH4; I) NaH, 9/10 .THF, 7o’C, 24h. 



Coupling the diol8 with trkthykne glycol ditosylate 9 using NaH in refluxing THFll(244) 
afforded macrocycle 1 in349b yieSd atar purification by column chromatography (silica, hexane-ethyl 
atZta@),az3agiassy!&d. In8 similarfashion,cwplingofthediol8withthedicosylaulOfurnishedthe 
““ocycle 2 in 29% yield. The struchues of both 1 and 2 were confirmed by NMR, mass spectra and 
rmcroanalyrislZl3. 

Thebindingabi&tksofcbiml 
potassium#ceaiun&atld 

macmcycks1and2werecvahlatedby extlauionoflithinm,sodium, 
ammo&m picrates. The associa&n constants (Ka) in chloroform at 27’ C were 

measured by cram’s picrate method. 14 The Ka values were much lower than those of simpk crown 
derivative& However these values axe of the same ordcz of magnitude as reported in the literature for 
~_aeved crown ether&. Macrocyck 1 showed relatively good binding towards potassium 

Table 1. Atiation eon&ants in CDCl3 at 27’ C 

Host Li+ Na+ Ic+ CS+ NHq+ 
1 2,700 3,600 30,ooo 5,400 49,500 
2 4,ooo 3,ooo 13,ooo 3,ooo 9,ooo 

We am currently investigating the binding properties of 1 and 2 with particular regard to 
enantiosekctive complexation with ammonium ions.We are also extending the synthetic approach to bis 
dextm crowa derivatives. 
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